2015 OU2 GROUNDWATER INVESTIGATION RE123D1, RE123D2, RE123D3 (VPB157) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP) SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

February 2016

2015 OU2 GROUNDWATER INVESTIGATION RE123D1, RE123D2, RE123D3 (VPB157) INSTALLATION REPORT

NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy
Naval Facilities Engineering Command, Atlantic
9324 Virginia Avenue
Building Z-144
Norfolk, Virginia 23511

Prepared by:

Resolution Consultants

A Joint Venture of AECOM & EnSafe
1500 Wells Fargo Building
440 Monticello Avenue
Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013

CTO WE15

February 2016

Brian Caldwell

Contract Task Order Manager

Brim Caldwell

Table of Contents

LIST O	F ACRC	NYMS AND ABBREVIATIONSii	i
1.0	PROJE	CT BACKGROUND1	I
2.0	1.1 1.2 1.3 FIELD	Scope and Objectives	2
	2.1 2.2 2.3 2.4 2.5	Drilling and Well Construction	1 5
3.0	REFER	ENCES8	3
		Tables	
Table '	1	Monitoring Well Construction Summary	
Table 2	2	Monitoring Well Development Summary	
Table 3	3	Analytical Data Summary	
Table 4	4	Stabilized Field Parameters	
		Figures	
Figure	1	General Location Map	
Figure	2	RE123D1, RE123D2, RE123D3 Location Map	

Appendices

Appendix A – RE123D1, RE123D2, RE123D3

Section 1 Boring Logs

Section 2 Monitoring Well Construction Logs

Section 3 Groundwater Sample Log Sheets

Section 4 Analytical Data Validation

Section 5 Survey

List of Acronyms and Abbreviations

AOC Area of Concern bgs below ground surface

COR Continuously Operating Reference

EPA Environmental Protection Agency, United States

ft feet

GOCO Government-Owned Contractor-Operated

GPS Global Positioning System
IDW Investigation Derived Waste
IR Installation Restoration
Katahdin Katahdin Analytical Services
NAD North American Datum

NAVD North American Vertical Datum

NAVFAC Naval Facilities Engineering Command

NG Northrop Grumman

NTU nephelometric turbidity units

NWIRP Naval Weapons Industrial Reserve Plant

NYS New York State

NYSDEC New York State Department of Environmental Conservation

ONCT On-site Containment Treatment System

OU Operable Unit

PCBs Polychlorinated Biphenyls

POTW Publicly Owned Treatment Works
PPE Personal Protective Equipment

PVC Polyvinylchloride

SAP Sampling and Analysis Plan SVOC Semivolatile Organic Compounds

TCE Trichloroethene

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC Total Organic Carbon
UFP United Federal Programs

US United States

VOC Volatile Organic Compounds

VPB Vertical Profile Boring

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of three monitoring wells and one initial quarterly groundwater monitoring event (specifically at the Vertical Profile Boring [VPB] 157 location) in 2015 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE123D1, RE123D2 and RE123D3. The purpose of this investigation was to ascertain the presence and level of contamination in the vicinity of the On-site Containment Treatment system (ONCT), between recovery wells 17 and 18. The locations of RE123D1, RE123D2 and RE123D3, VPBs and monitoring well locations are shown in Figure 2.

The field investigation included completing three monitoring wells, well development, soil/groundwater analysis, groundwater grab samples, and surveying. Field tasks were conducted in 2015 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1990); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at the RE123 locations, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 878 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

2.0 FIELD PROGRAM

Three monitoring wells were installed in the vicinity of VPB157 between June and August 2015. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE123D1, RE123D2 and RE123D3 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE123D1, RE123D2 and RE123D3 were 505 ft, 660 ft and 840 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in the Appendix A. *2015 OU2 Groundwater Investigation VPB157* (Resolution Consultants, 2016) documents the installation of this VPB including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length.

Prior to installing each monitoring well, the results of the groundwater samples, the geophysical logs, lithology and field data from the vertical profile borings were analyzed. Screen intervals were determined based on this analysis: intervals with the highest VOC concentrations as measured in the hydropunch samples, and coincident intervals with the highest apparent permeability based on the gamma logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260B and 1,4-dioxane via Method 8270C by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE123D1, RE123D2 and RE123D3 are sampled quarterly as part of the Navy's ongoing Environmental Restoration Program. Resolution Consultants sampled these three wells during the September 2015 quarterly monitoring event. Analytical results and stabilized field parameters for these data are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A.

2.4 Decontamination and Investigation Derived Waste (IDW)

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable Teflon or polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Liquinox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) N.Y. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical

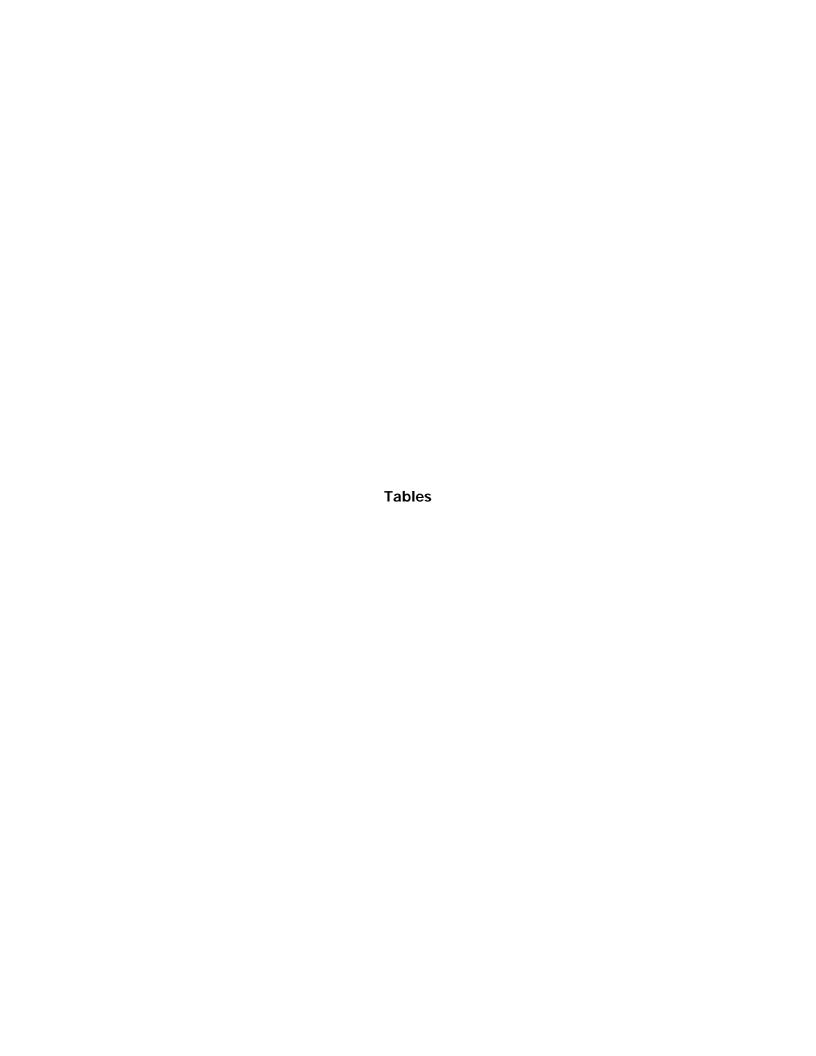
control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0 REFERENCES

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York.* Revised September 1994.

Naval Facilities Engineering Command (NAVFAC), 2003. *Record of Decision Naval Weapons Industrial Reserve Plant Bethpage, New York, Operable Unit 2 – Groundwater*, NYS Registry: 1-30-003B. April 2003.


Resolution Consultants, 2013a. *United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York.* April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol.* November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December 2013.

Resolution Consultants, 2016. 2015 OU2 Groundwater Investigation VPB157, Bethpage, NY. January 2016.

Smolensky, D., and Feldman, S., 1990. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE123D1	7/9/2015	105.93	105.49	505	52.5	480 - 500	500 - 505	520
RE123D2	8/3/2015	106.32	106.11	660	54	635 - 655	655 - 660	675
RE123D3	8/28/2015	106.15	105.92	840	53.5	815 - 835	835 - 840	855

MSL - mean sea level

ft bgs - feet below ground surface

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	AIR DEVEL	OPMENT	PUN	IP DEVELOPME	APPROX. TOTAL	FINAL	
	DATE	APPROX. VOLUME (GAL)	DATE	FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)	DEVELOPMENT VOLUME (GAL)	TURBIDITY (NTUs)
RE123D1	9/3/2015	5000	9/8/2015	480-500	6000	11,000	4.19
RE123D2	9/4/2015	5000	9/9/2015- 9/10/2015	635-655	5925	10,925	5.36
RE123D3	9/2/2015	6500	9/10/2015- 9/11/2015	815-835	6240	12,740	5.14

GAL - gallon

FT BGS - feet below ground surface NTUs - Nephelometric Turbidity Units

TABLE 3 ANALYTICAL DATA SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Location	NVCDEC	RE123D1	RE123D2	RE123D3	
Sample Date	NYSDEC Groundwater	9/29/2015	9/29/2015	9/29/2015	
Sample ID	Guidance or Standard Value	RE123D1-GW- 092915	RE123D2-GW- 092915	RE123D3-GW- 092915	
Sample type code	(Note 1)	N	N	N	
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,1,2,2-TETRACHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,1,2-TRICHLOROETHANE	1	< 0.50 U	< 0.50 U	< 0.50 U	
1,1-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,1-DICHLOROETHENE	5	0.42 J	< 0.50 U	< 0.50 U	
1,2,4-TRICHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-DIBROMO-3-CHLOROPROPANE	0.04	< 0.75 U	< 0.75 U	< 0.75 U	
1,2-DIBROMOETHANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
1,2-DICHLOROETHENE, TOTAL	5	0.50 J	< 1.0 U	< 1.0 U	
1,2-DICHLOROPROPANE	1	< 0.50 U	< 0.50 U	< 0.50 U	
1,3-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	
1,4-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	
1,4-DIOXANE (Method 8270D_SIM)	NL	6.6	0.93	< 0.17 U	
2-BUTANONE	50	< 2.5 UJ	< 2.5 UJ	< 2.5 UJ	
2-HEXANONE	50	< 2.5 UJ	< 2.5 UJ	< 2.5 UJ	
4-METHYL-2-PENTANONE	NL	< 2.5 UJ	< 2.5 UJ	< 2.5 UJ	
ACETONE	50	5.4 J	< 2.5 UJ	< 2.5 UJ	
BENZENE	1	< 0.50 U	< 0.50 U	< 0.50 U	
BROMODICHLOROMETHANE	50	< 0.50 U	< 0.50 U	< 0.50 U	
BROMOFORM	50	< 0.50 U	< 0.50 U	< 0.50 U	
BROMOMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	
CARBON DISULFIDE	60	< 0.50 UJ	< 0.50 UJ	< 0.50 UJ	
CARBON TETRACHLORIDE	5	< 0.50 U	< 0.50 U	< 0.50 U	
CHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
CHLOROETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	
CHLOROFORM	7	< 0.50 U	< 0.50 U	< 0.50 U	
CHLOROMETHANE	5	< 1.0 U	< 1.0 UJ	< 1.0 UJ	
CIS-1,2-DICHLOROETHENE	5	0.50 J	< 0.50 U	< 0.50 U	
CIS-1.3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	
CYCLOHEXANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	
DIBROMOCHLOROMETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	
DICHLORODIFLUOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	
ETHYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
ISOPROPYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
M- AND P-XYLENE	NL	< 1.0 U	< 1.0 U	< 1.0 U	
METHYL ACETATE	NL	< 0.75 U	< 0.75 U	< 0.75 U	
METHYL CYCLOHEXANE	NL	< 0.50 U	< 0.50 U	< 0.73 U	
METHYL CICLOHEXANE METHYL TERT-BUTYL ETHER	10	< 0.50 U	< 0.50 U	< 0.50 U	
METHYLENE CHLORIDE	5	< 2.5 U	< 2.5 U	< 0.30 U	
O-XYLENE	NL NL	< 2.5 U	< 2.5 U	< 0.50 UJ	
O-ATLEINE STYRENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
TETRACHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 UJ	
		†			
TOLUENE TRANS 1.2 DICHLODOFTHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
TRANS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	
TRANS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	
TRICHLOROETHENE	5	12	1.4	< 0.50 U	
TRICHLOROFLUOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	
VINYL CHLORIDE	2	< 1.0 U	< 1.0 U	< 1.0 U	
XYLENES, TOTAL	5	< 1.5 U	< 1.5 U	< 1.5 U	

TABLE 3 ANALYTICAL DATA SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRT BETHPAGE, NY

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)

Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; *Bold and Italics* = Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

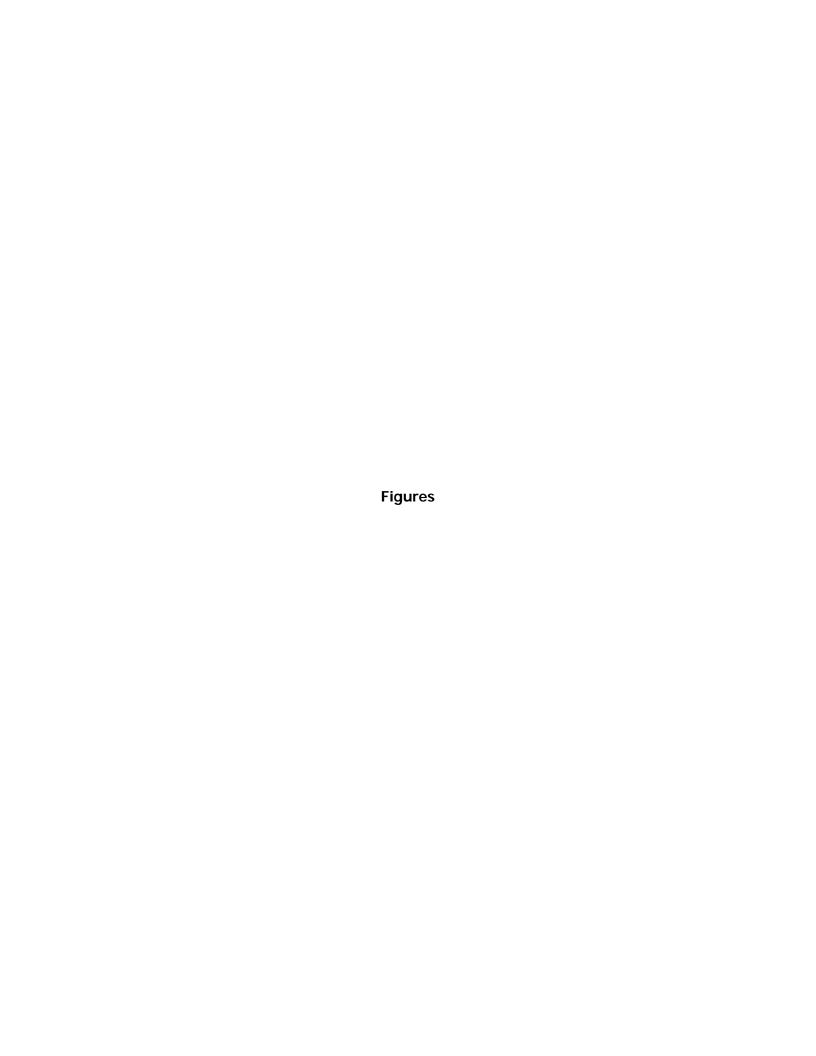
- U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.
- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

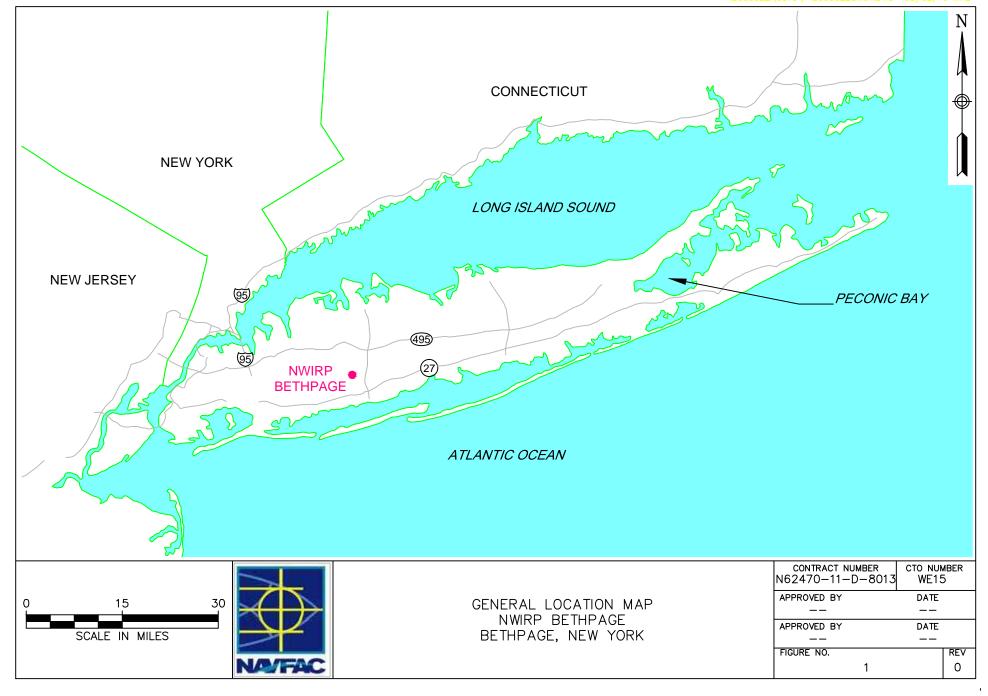
TABLE 4 STABILIZED FIELD PARAMETERS 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

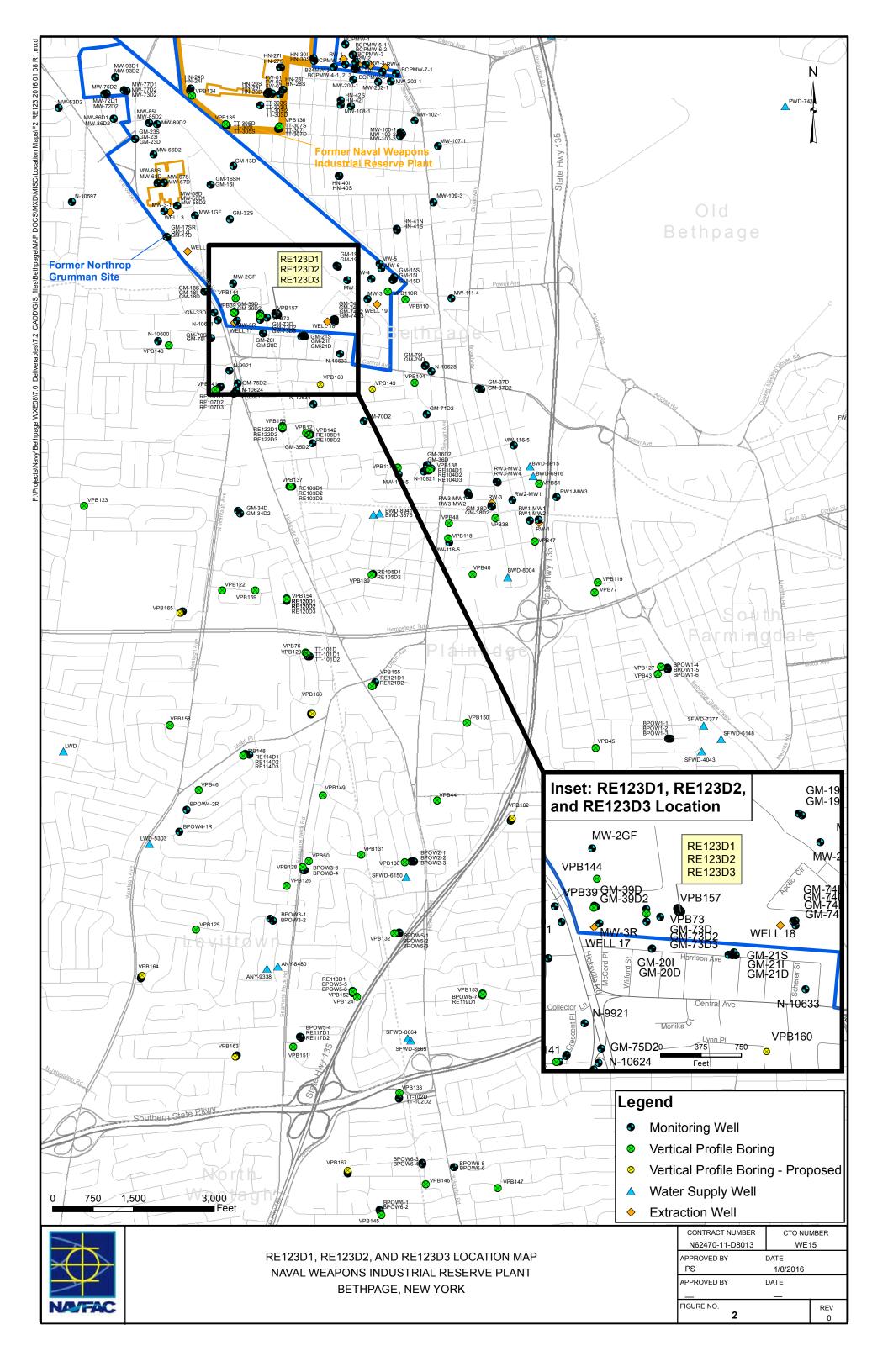
Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
RE123D1	9/29/2015	19.82	5.01	0.097	7.64	261.9	5.26	46.62	500
RE123D2	9/29/2015	21.41	4.34	0.025	6.52	324.1	13.2	49.02	500
RE123D3	9/29/2015	19.54	5.12	0.041	0.46	-119.0	9.87	49.31	500

°C - degrees Celsius

 $\mu S/cm$ - Microsiemens per Centimeter


mg/L - milligrams per liter


mV - Millivolts


NTU - Nephelometric Turbidity Unit

ft bgs - feet below ground surface

ml/min - mililiters per minute

Appendix A
RE123D1, RE123D2, RE123D3

Section 1

Boring Logs

Boring Log

BORING #: RE123D1 Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer								
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump								
Project #: 60266526	Well Screen Interval (ft): 480-500								
Start Date: 6/25/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):							
Finish Date: 7/9/2015	Northing: 209894.44 Easting: 1124871.2	Total Depth (ft): 520.0							

ДЕРТН (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-483 ft bgs: See VPB157 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200						-	Bentonite Grout
250							
300							
350							
400							4" Diameter Schedule 80 PVC Riser
450							

Boring Log

BORING #: RE123D1 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer								
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump								
Project #: 60266526	Well Screen Interval (ft): 480-500								
Start Date: 6/25/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):							
Finish Date: 7/9/2015	Northing: 209894.44 Easting: 1124871.2	Total Depth (ft): 520.0							

Material Description								
10	DЕРТН (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
470	468					0-483 ft bgs: See VPB157 for Descriptions (continued)		4" Diameter
478	470							Riser (continued)
478	472							
478	474							
480	476							#00 Filter Sand
#1 Filter Sand #1 Diameter Schedule 80 PVC, 10 Siot Well Screen (480-500 ft bgs) Some Sand, medium Sand, filter fine sand Some Sand, medium Sand, few coarse sand, trace silt Sump #1 Sand to fill bottom of boring to sump	478							,, oo , ii.o. oaa
#1 Filter Sand #1 Diameter schedule 80 PVC, 10 Sict Well Screen (480-500 ft bgs) Some Sand, medium Sand, filter fine sand #2 Diameter schedule 80 PVC, 10 Sict Well Screen (480-500 ft bgs) Some Sand, medium Sand, few coarse sand, trace sit #1 Sand to fill bottom of boring to sump #1 Sand to fill bottom of boring to sump	480							
Layers of white (7.5 YR 8/1) and very pale brown (10 YR 8/2) SILTY SAND; angular medium Sand, little fine sand, 20% fines (sit or day) SM SM Very pale brown (10 YR 8/2) poorly graded SAND, angular medium Sand, little fine sand (20% fines sand) Very pale brown (10 YR 7/2) SILTY SAND interbedded with thickly laminated Lighte and one layer (1.5 in. thick) of poorly graded sand, medium sand, medium sand, few coarse sand, trace slit SP Very pale brown (10 YR 7/2) SILTY SAND interbedded with thickly laminated Lighte and one layer (1.5 in. thick) of poorly graded sand, medium sand SP Very pale brown (10 YR 7/3) poorly graded SAND, angular medium Sand, few coarse sand, trace slit Sump #1 Sand to fill bottom of boring to sump	-							#1 Filter Sand
SM Silt or day Silt or d	-	0				Layers of white (7.5 YR 8/1) and very pale brown (10 YR 8/2)	†∃	
Very pale brown (10 YR 8/2) poorly graded SAND, angular medium Sand, little fine sand Very pale brown (10 YR 8/2) poorly graded SAND, angular medium Sand, little fine sand 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	<u> </u>			SM		(silt or clay)		
SP SP Light gray (10 YR 7/2) SILTY SAND interbedded with thickly laminated Lighite and one layer (1.5 in. thick) of poorty graded SAND, angular medium Sand, few coarse sand, trace silt SP Very pale brown (10 YR 7/3) poorty graded SAND, angular medium Sand, few coarse sand, trace silt SP Sump #1 Sand to fill bottom of boring to sump #1 Sand to fill bottom of boring to sump	 							
492	-	0				Very pale brown (10 YR 8/2) poorly graded SAND, angular medium Sand, little fine sand		
Light gray (10 YR 7/2) SILTY SAND interbedded with thickly laminated Light and one layer (1.5 in. thick) of poorly graded sand, medium sand SP Very pale brown (10 YR 7/3) poorly graded SAND, angular medium Sand, few coarse sand, trace silt Sump Sump #1 Sand to fill bottom of boring to sump	-			SP				80 PVC, 10 Slot Well
Manipated Lightle and one layer (1.5 in. thick) of poorly graded sand, medium sand SM SM SM SM SM SM SM S	492					Light gray (10 YR 7/2) SILTY SAND interbedded with thickly		Screen (480-500 ft bgs)
198	494	1.0		CNA		laminated Lignite and one layer (1.5 in. thick) of poorly graded		
500 - 502 - 504 - 506 - 508 - 510 - 512 - 514 - 516 - 518	496			3101				
500 - 502 - 504 - 506 - 508 - 510 - 512 - 514 - 516 - 518	498	0		SP		Very pale brown (10 YR 7/3) poorly graded SAND, angular		
Sump 504 506 508 510 512 514 516 518	500					median cana, rew coarse sand, trace sit		
504 506 508 510 512 	502							Sump
508	504							
510	506							
512 - 514 - 516 - 518 -	508							
Total Side Side Side Side Side Side Side Side	510							
514 of boring to sump	512							
	514							
	516							
	<u> </u>							
End of boring at 520.0 ft. bgs.	-					End of having of 500 0 % by		
	320					End of boring at 520.0 ft. bgs.		

Boring Log

BORING #: RE123D2 Sheet 1 of 2

Client: Department of the Navy, Naval Facility	Logged By: V. Thayer								
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump								
Project #: 60266526	Ground Elevation (msl): 106.32	Well Screen Interval (ft): 635-655							
Start Date: 7/22/2015	Water Level (ft):								
Finish Date: 8/3/2015	Northing: 209887.34 Easting: 1124886.22	Total Depth (ft): 675.0							

Note: auger drilling to install casing 7/13/15-7/14/15; mud rotary to

install	well	7/22/15-8/3/15.	

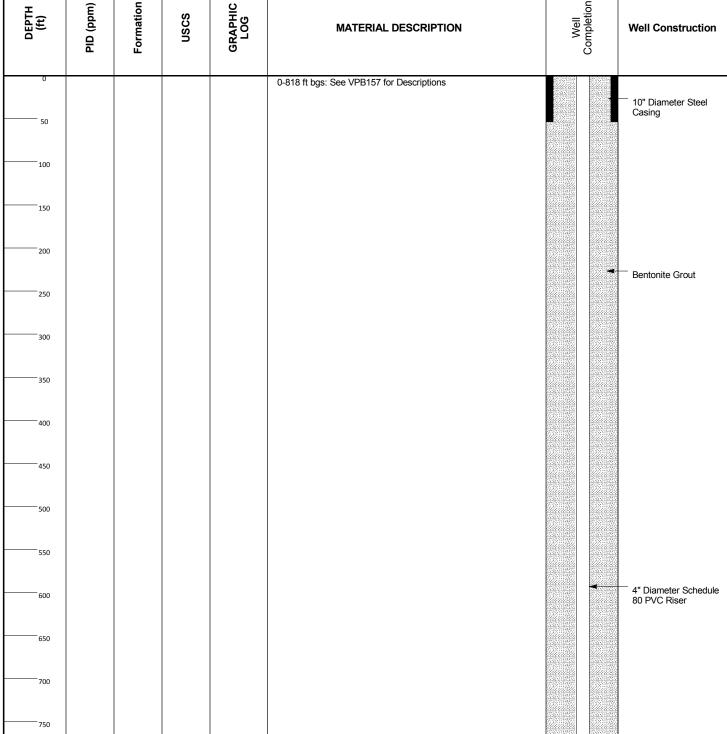
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-638 ft bgs: See VPB157 for Descriptions		
50							10" Diameter Steel Casing
							8" Diameter Steel Inner Casing
100							
150							
200							
250						-	Bentonite Grout
						0.000 0.000 0.000 0.000	
300							
350							
400							
450							
500						60000000000	4" Diameter Schedule
							80 PVC Riser
550							
600							

Boring Log

BORING #: RE123D2 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer		
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump		
Project #: 60266526	Ground Elevation (msl): 106.32	Well Screen Interval (ft): 635-655	
Start Date: 7/22/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 8/3/2015	Northing: 209887.34 Easting: 1124886.22	Total Depth (ft): 675.0	

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
608 610 612 614					0-638 ft bgs: See VPB157 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
616 618 620 622						-	#00 Filter Sand
626 628 630 632 634 636							#1 Filter Sand
638	0		SW-SM		Light gray (10 YR 7/2) well graded SAND with Silt and gravel; subangular medium to coarse sand, few fine sand, few silt, fine gravel (30%)		
644	0		SW		Very pale brown (10 YR 7/3) well graded SAND with Gravel, subangular medium to coarse sand, little fine sand, subrounded fine to coarse gravel (25%)		4" Diameter schedule 80 PVC, 10 Slot Well
648 650 652	0		SW		Very pale brown (10 YR 7/3) SAND with Gravel, angular medium to coarse sand, subrounded to subangular fine to coarse gravel (30%)		Screen (635-655 ft bgs)
654 656 658 660	0		GW SW-SC		White to very pale brown (10 YR 8/1, 8/2) well graded GRAVEL, subrounded to subangular fine to coarse Gravel Very pale brown (10 YR 7/3) well graded SAND with Clay and gravel, slight orange staining, angular sand		Sump
662 664 666 668 670 672							#1 Sand to fill bottom of boring to sump
0/4					End of boring at 675.0 ft. bgs.	<u> </u>	


Boring Log

BORING #: RE123D3 Sheet 1 of 2

Client: Department of the Navy, Naval Facility	Logged By: V. Thayer		
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump		
Project #: 60266526	Ground Elevation (msl): 106.15	Well Screen Interval (ft): 815-835	
Start Date: 8/12/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 8/28/2015	Northing: 209912.23 Easting: 124860.24	Total Depth (ft): 855.0	

Note: auger drilling to install casing 7/15/15-7/17/15; mud rotary to install well 8/12/15-8/28/15

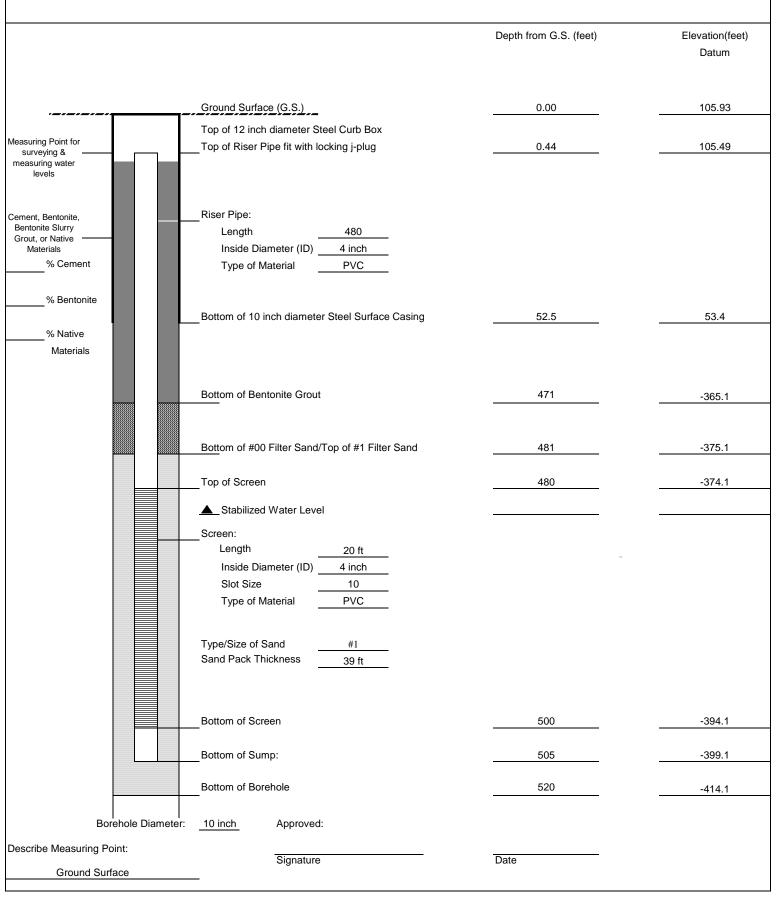
mud rotary	to install v	well 8/12/1	5-8/28/15.				
Ŧ.	m)	ion	(0	J HC			

Boring Log

BORING #: RE123D3 Sheet 2 of 2

Client: Department of the Navy, Naval Facility	Logged By: V. Thayer		
Location: Sunbeam Ave., Bethpage, NY	Drilling Company: Delta Well & Pump		
Project #: 60266526	Well Screen Interval (ft): 815-835		
Start Date: 8/12/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 8/28/2015	Northing: 209912.23 Easting: 124860.24	Total Depth (ft): 855.0	

DЕРТН (ft)	PID (ppm)	Formation	SOSN	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
780 782 784 786 788					0-818 ft bgs: See VPB157 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
792 794 796 798 800						4	#00 Filter Sand
804 806 808 810 812 814						•	#1 Filter Sand
818 820 822 822 824	0		SP-SM		Gray (10 YR 6/1) poorly graded SAND with Silt, angular medium sand, little fine sand, few coarse sand, few fines (clay or silt) Gray (10 YR 6/1) poorly graded SAND with Silt, angular medium sand, little fine sand, few fines (clay or silt)		4" Diameter schedule
828 830 832 834	0		SC SP-SM		Gray (10 RY 5/1) clayey SAND, angular fine to coarse Sand, trace fine gravel, 20% fines (clay or silt) grades with depth to medium sand, few coarse sand, fines (20%) Light gray (GLEY 1 7/1) poorly graded SAND with Silt, angular medium sand, little fine sand, 10% fines (silt or clay),		80 PVC, 10 Slot Well Screen (815-835 ft bgs)
836 838 840 842					muscovite flakes		Sump
846 848 850 852							#1 Sand to fill bottom of boring to sump
					End of boring at 855.0 ft. bgs.		


Section 2

Monitoring Well Construction Logs

Client:	NAVFAC	Project Number:	60266526	WELL	ID: RE123D1
Site Locati	on: NWIRP BETHPAC	E, NY			
Well Locat	tion: Sunbeam Avenue, I	Date Installed:	6/25/2015 - 7/9/2015		
Method:	MUD ROTARY			Inspector:	V. Thayer
Coords:	Northing: 209894 44	Fasting: 1124871	20	Contractor:	DELTA WELL & PLIMP

MONITORING WELL CONSTRUCTION DETAIL

	Client:	NAVFAC	Project Number: 60266526	WELL ID: RE123D2			
Site Location: NWIRP BETHPAGE, NY							
	Well Location	on: Sunbeam Avenue, E	Date Installed: 7/22/2015 - 8/3/15				
	Method:	MUD ROTARY	Inspector: V. Thayer				
	Coords:	Northing: 209887.34	Easting: 1124886.22	Contractor: DELTA WELL & PUMP			

MONITORING WELL CONSTRUCTION DETAIL

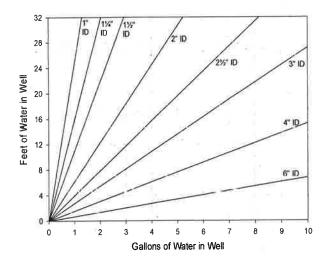
OTE: auger drilling to install 14/15; mud rotary to install v		Depth from G.S. (feet)	Elevation(feet) Datum
	Ground Surface (G.S.)	0.00	106.32
ľ	Top of 12 inch diameter Steel Curb Box		
easuring Point for surveying &	Top of Riser Pipe fit with locking j-plug	0.21	106.11
neasuring water levels			
ment, Bentonite,	Riser Pipe:		
entonite Slurry rout, or Native	Length <u>635</u>		
Materials	Inside Diameter (ID) 4 inch		
% Cement	Type of Material PVC		
% Bentonite	Bottom of 10 inch diameter Steel Surface Casing	54	52.3
% Native			
Materials	Bottom of 8 inch diameter (inner) Steel Surface Casing	89	17.3
	Bottom of Bentonite Grout	613	-506.7
	Bottom of #00 Filter Sand/Top of #1 Filter Sand	625	-518.7
	Top of Screen	635	-528.7
	Stabilized Water Level		
	Screen: Length 20 ft		
	Inside Diameter (ID) 4 inch	-	
	Slot Size 10		
	Type of Material PVC		
	Type of Material 170		
	Type/Size of Sand #1		
	Sand Pack Thickness50 ft		
	Bottom of Screen	655	-548.7
	Bottom of Sump:	660	-553.7
	Bottom of Borehole	675	-568.7
Borehole Dia	ameter: <u>8 inch</u> Approved:		
scribe Measuring Point:			
	Signature	Date	

Client:	NAVFAC	Project Number: 60266526	WELL ID: RE123D3
Site Location	: NWIRP BETHPAG		
Well Locatio	n: Sunbeam Avenue, E	Date Installed: 8/12/2015 - 8/28/2015	
Method:	MUD ROTARY	Inspector: V. Thayer	
Coords:	Northing: 209912.23	Easting: 1124860.24	Contractor: DELTA WELL & PUMP

MONITORING WELL CONSTRUCTION DETAIL

		Depth from G.S. (feet)	Elevation(feet)
NOTE: auger drilling to install casing 7 7/17/15; mud rotary to install well 8/12/	7/15/15 – /15 – 8/28/15.		Datum
	Ground Surface (G.S.)	0.00	106.15
Measuring Point for surveying &	Top of 12 inch diameter Steel Curb Box _Top of Riser Pipe fit with locking j-plug	0.23	105.92
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement	Riser Pipe: Length 815 Inside Diameter (ID) 4 inch Type of Material PVC		
% Bentonite % Native Materials	_ Bottom of 10 inch diameter Steel Surface Casing	53.5	52.7
	Bottom of Bentonite Grout	786.0	-679.9
	Bottom of #00 Filter Sand/Top of #1 Filter Sand	805	-698.9
	_Top of Screen	815	-708.9
	▲ Stabilized Water Level Screen:		
	Length 20 ft Inside Diameter (ID) 4 inch Slot Size 10 Type of Material PVC		
	Type/Size of Sand #1 Sand Pack Thickness 50 ft		
	_Bottom of Screen	835	-728.9
	_Bottom of Sump:	840	-733.9
	Bottom of Borehole	855	-748.9
Borehole Diameter:	10 inch Approved:		
Describe Measuring Point: Ground Surface	Signature	Date	

Section 3


Groundwater Sample Log Sheets

Well ID: REIZ3 DI

Client:	Navy NW	VIRP B	ethpage	y		ate: 9	1129 1	15 Ti	me: Start	955 am/pm
Project N				266526		N			Finish	/ৈZ/O am/pm
Site Loca		H	IN Lot	<u> </u>			-75	1 12	196	
Weather	Conds:	Hogy	ry 1	30	(Collector(s	· Van	Kure	<u>H</u>	
1. WATE	R LEVEL	DATA:	(meas	ured from Top	of Casin	g)				
a. Tot	al Well Lei	ngth .<	545	c. Length of	Water Col	umn	(a-b)		Casing Diar	meter/Material
							` ′		4-in	ch PVC
b. Wa	ter Table [Depth_	15.43	d. Calculated	d System V	olume (see	e back)	/	3.1 gal	
2. WELL	PURGE D	DATA								
a. Pur	ge Method	d:Ge	eotech b	ladder pump v	vith drop tu	be assem	bly		- 3	-
b. Acc	eptance C	riteria d	defined	(see workplan)	1					
	perature		3%	- D.O.		(values >	0.5 mg/L)	Turbid	ity ± 109	%
- pH			0.1 unit			V				
- Sp. C	Cond.	± 3	3%	- Drawdown	< 0.3'		Re	emove a mi	nimum 1 scre	een volume
c. Field	d Testing I	Equipm	ent use	d: Ma	ake		Model		Seria	l Number
			-	451			556 inps			2120
	Volume		3	Hanna			HI 2000	3	U64	15184
Time	Removed	Temp.	pH .	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	<u> </u>
830	33			a : .	Sa w.					631
955									46.67	RESET
1005		20.13	5.97	0.110	10:72	223.8	32.2	500	46.62	1
1010		19.91	5.47	0.101	8-67	233.7	_	500	46.62	very cloudy
1015	-	19.88	8:30	0.097	7.38	277.5	1.28	500	46.62	elovely
10.50		19.82	5-19	0.096	7-74	242.0	4	500	46.62	l ₁
1025		10.00	8-11	0.096	7-79	251.9	58.6	See	46.62	84
	eptance c				Yeş No	N/A	4			(continued on back)
	required					图				
	required to re paramet			eacned		H				
	If no or N/			ow.						
				40		1584				
3 SAMDI	E COLLE	CTION	ı	Mothod: Goo	took bladd	or numn u	ith drop tul	ha aaaamb	ls.	
J. OANIFE	L COLLL	.01101		Method: Geo	tech bladd	er pump w	ntii arop tui	be assemble	у	
Sample ID		_2	(Container Type	No. of	Containers	s Preser	vation	Analysis Req	
C. F. H. L. S. W.	P590-Wa			40-mL vial		3	HC		VOCs	1140
6[2]0	4W-09Z	415		1-L amber		2	nor	ne 1	,4-Dioxane	1140
2000	N	. 1 /	101	per contract	set p		05-			
Comments	Liqui	tele	e in	Sump, re	sei pe	my W	955			
	Live	NOY								
Signature_	(·							Date		

Purge Volume Calculation

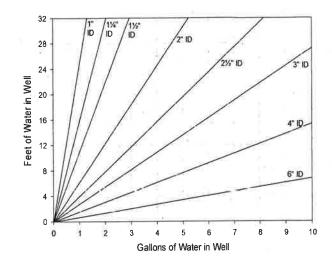
Volume	/Li	inear	Ft. c	of Pipe	
ID (in)	(Gallor	1	Liter	
0.2	5 (0.0025	5 (0.0097	
0.37	5 (0.0057	7 (0.0217	
0.9	5 (0.0102	2 (0.0386	
0.7	5 (0.0229	9 (0.0869	
	1 (0.0408	3 (0.1544	
1.2	5 (0.0637	7 (0.2413	
1.5	5 (0.0918	3 (0.3475	
	2 (0.1632	2	0.6178	
2.	5 ().255()	0.9653	
	3 (0.3672	2	1.3900	
s .	4 (0.6528	3	2.4711	
	6 1	1.4688	3	5.5600	

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID: RE123D1

ontinued 1	from front)									
	Volume									
Time	Removed	Temp	рΗ	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)	- 00	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	f
v7u	1	14.87	5.08	0.096	7.76	756.2	100 11	500	46.62	clearing
10.32	Squl	(4,84	6.07	0-096	7.68	257-7	13.4		46.62	l (
1040	la constant	19:77	5-06	0.096	7.63	259.4	-	200	46-62	
1045		19.98	5.04	0.097	7.63	762.4	9.11	220	46.62	clear
1050		17.90	5,05	0-096	7.64	261.7		800	46.62	"
1055		19.83	504	0.097	7-67	261.6	10,00	200	46-62	(*
1100		19.77	5,03	0.096	7.60	262.5	-	for	46.62	14
1105	Waal	19.77	5.03	0-096	7-66	262.6	9.61	200	46.62	લ્દ
llo		.20.00	5.03	0.097	7-51	267.6		Soc	46-62	15
1115		20.10	5,03	0.097	7.62	267.8	7-24	SOU	46-62	ıc
1120		19.84	5.03	0.096	7.64	261.2	-	500	46-62	11
1125		19-94	5,02	0.097	7.65	267.5	5.76	500	46-62	и
1130	13gel	20.04	2,02	0.097	7-68	261.5	_	130	46.62	, 4
1135	Signal	19.82	5.01	0.097	7.64	261.9	4	80c	46.62	1-
1129		77.00	0	01077						
	-									
							-			
				-	_	-	_			
					Ž.			3.0	N 91	
						1			1	



Well ID: RE12302

Low Flow Ground Water Sample Collection Record

Client:_	Navy NV	VIRP B	ethpage		D)ate: 9	1291	15 Ti	me: Start	%/⊘ am/pn
Project I	-			266526		18			Finish	
Site Loc				600						2
Weather	Conds: _	to	994,0	rancosto 75	(Collector(s):			
1. WAT	ER LEVEL	DATA	(meas	ured from To	p of Casing	g)				
a. To	tal Well Le	ength	660	c. Length of	Water Col	umn	(a-b)		Casing Diam	eter/Material
								1.0		h PVC
b. W	ater Table	Depth_	19.01	d. Calculate	d System V	olume (see	e back)	49.62	1 13.1 ga	
	L PURGE I									
a. Pu	rge Method	d: Ge	eotech b	ladder pump v	with drop tu	be assem	bly			
b. Ac	ceptance C	Criteria d	defined	(see workplan)					
	nperature		3%				0.5 mg/L)	Turbid	ity ± 10%	
- pH	Cond.		0.1 unit	,		V	D.		-1	•
- Sp.	Coria.	Ι.	3%	- Drawdowr	n < 0.3'		Re	move a mi	nimum 1 scree	en volume
c. Fie	eld Testing	Equipm	ent use	d: M	ake		Model		Philadel	Number
			=		ANNA		556 14000 tas		64518	
	Volume				ALIVZV ZI		4198703	-	643/8/	X
<u>Time</u>	Removed	<u>Temp.</u>	. <u>На</u>	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
910										
150	124/30	2102	5.08	0.030	5.83	255.6		500	49.03	chrely
1000	10	21.08	4.73	0.026	6.67	291.0			49.02	
1005	3 Gard	21.18	4.49	0.025	7.10	298.7	169			
1010	0	21.31	4.51	0.025	6.83	3021		131		
1015		21.33	4.46	0.025	6.38	305.9	20.2	¥ 5.0	49.01	
1020		21.38	4.42	0.025	6:16	311.1	278	9.4	49.03	
Ha Ha	ceptance of the second	volume turbidity ters sta	been re been r bilized	emoved eached	Yes No	N/A				(continued on back)
3. SAMP	LE COLLE	ECTION	l: N	Method: Geo	otech bladd	er pump w	ith drop tul	oe assemb	ly	_
Sample II		1-0429	15	Container Type 40-mL vial	e No. of (Containers 3	Preser		Analysis Req. VOCs	Time
REIL	-3026	10.09	2915	1-L amber		2	nor	ne 1	,4-Dioxane	11/0
Comment		by bo	Lecon		ew tubi	ig, /if l	15 }			
Signature		Pau	d Ka	ath			7	Date	9/29/	K-
	3								LowFlow-GWa -	Sept 2015.xls

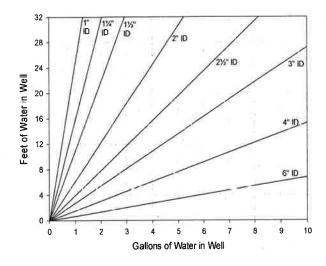
Purge Volume Calculation

1	Volume /	Linear Ft	. of Pipe
١	ID (in)	Gallon	Liter
Ϊ	0.25	0.0025	0.0097
ı	0.375	0.0057	0.0217
ı	0.5	0.0102	0.0386
ı	0.75	0.0229	0.0869
	1	0.0408	0.1544
	1.25	0.0637	0.2413
	1.5	0.0918	0.3475
	2	0.1632	0.6178
	2.5	0.2550	0.9653
	3	0.3672	1.3900
	4	0.6528	2.4711
	6	1.4688	5.5600

1 screen volume 15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

continued f	rom front) Volume									
Time (24 hr)	Removed (Liters)	Temp (°C)	рН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1025		21.35	11.45	0.025	6.01	311.2	14.5	500	49.02	
1030		2134	4.44	0.025	6.02	3136	17.1		49.04	
1035	Digel	21.81	4.41	0.025	6.05	315.2	12.2	1	49.03	
1040	U	21,55	4.36	0.625	6.52	317.8	11.8		49.03	
1045		21.42	4,40	0.025	6.82	317.9	15.0		49.02	
11250		2/.41	4.38	0.025	6.61	320.4			49.02	
1055		21,41	4.33	0.025	6.40	324.7	13,2		49.03	
1100		21.41	4.34	0025	6.52	3241			49.02	
										-
1110										Sangle
								-		- 0
									-11	
						(e)				
							,			F
								İ		
										E.
					8					


Well ID: RE123 D3

Low Flow Ground Water Sample Collection Record

Client:	Navy NV	VIRP Beth	npage			Date: 9	129 1	15 Ti	me: Start	<i>℃//</i> 2 am/pm
Project N				6526		-			Finish_	
Site Loca		MTH	100							<u></u>
Weather	Conds:	80°F	, M	1994		Collector(s	s):	JC		
1. WAT	ER LEVEL	DATA: (r		red from To			•			· · · · · · · · · · · · · · · · · · ·
		75.		c. Length of	-		(a-b)		Casing Diar	meter/Material
									4-in	ch PVC
			9.09	d. Calculate	d System \	/olume (se	e back)	13.1	991	
	L PURGE rge Metho		tech bla	adder pump v	with drop tu	ıbe assem	bly			
b. Ac	ceptance (Criteria del	fined (s	see workplan)					
	nperature	± 3%	-	- D.O.		(values >	0.5 mg/L)	Turbid	ity ± 109	%
- pH			unit			V				
- Sp.	Cond.	± 3%)	- Drawdowr	n < 0.3'		Re	emove a mi	nimum 1 scre	en volume
c. Fie	eld Testing	Equipmen	it used	YSI M	ake		Model 556 MP	C		l Number Z//8
			-	I (ngan			HI 987		U64.	
	Volume									
Time	Removed	13.8750-3500-995	<u>На</u>	Spec. Cond.	PC1927 100 100 100 100 100 100 100 100 100 10	ORP	The second secon	Flow Rate		Color/Odor
(24hr)	(Liters)	(°C)	1	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
910	ļ	1926 4	156	0.031	7.35	291.	Ŧ		4920	ON
950	5 au	\$97 9	1.70	0.044	6.44	105.5		500		4
955		18.95 L	1.67	0-044	6-11	48.4	30.3	500	49.28	cloudy lovare
1000		1898 4	1.86	0.044	5.77	-25.6			49.29	
1005		19.11 4	94	0.044	2.49	-51.3		V, 5-D	49.30	
1610		1908 5	1.05	0.044	0.67	-90.1	3/.8	1.00	49.30	
1015		19.66 5		0.044	0:61	199.7			49.28	
	ceptance o	•			Yes No		4			(continued on back)
	s required s required									
	ve parame	•		acrieu		H				
		/A - Explai		w.	4	ш				
3. SAMP	LE COLLI	ECTION:	M	ethod: Geo	tech bladd	er pump w	ith drop tul	oe assemb	у	•
Sample II)		Co	ontainer Type	No. of	Containers	s Preser	vation	Analysis Req	ı Time
	-GW-09			40-mL vial		3	HC		VOCs	1100
REIZZDY	- GW-0	92915		1-L amber		2	nor	ne 1	,4-Dioxane	1(00
		V. 10	Ţ.		3 20					<i>y</i>
Comment	-	it bot	ton	with nou	· Juliny					j.
	1	iquinos	d	peon	1					3
			1						0/-0	1-1
Signature								Date	7/29/	2015
	_7		1/			100			LowFlow-GWa	- Sept 2015.xls

Purge Volume Calculation

1

İ	Volume /	Linear Ft	. of Pipe
	ID (in)	Gallon	Liter
	0.25	0.0025	0.0097
	0.375	0.0057	0.0217
	0.5	0.0102	0.0386
	0.75	0.0229	0.0869
	- 1	0.0408	0.1544
	1.25	0.0637	0.2413
	1.5	0.0918	0.3475
	2	0.1632	0.6178
	2.5	0.2550	0.9653
	3	0.3672	1.3900
	4	0.6528	2.4711
	6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G
20 ft = 49.6 L / 13.1 G
25 ft = 61.7 L / 16.3 G

Wel	11	ID٠
446		ıv.

continued t	from front) Volume									
Time	Removed	Temp	рΗ	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
1020		19.42	5.18	6,043	0,57	-108.0	15.1		49.31	
1625	1000	19.31	5.05	0043	05\$	-1077			31	
1030	1	19.27	4.99	2042	0.53	-1041	118	, ,	49.32	2
1035		19,20	5.07	0.042	0.50	-967	17		49.33	
1010		1967	531	0.042	6.49	-117.1	9:87	500	49.32	
1045		1946	5.11	6.041	0.48	-1145			49,31	
1050		19.54	5.12	0.041	0-46	-119.0		500	49-31	
									+	
	V				11				3	
			>						- +4 -3	
							5			
						÷				
).*				
					-		,			9
							1			
									-	
+	-					-				
	 					1				
id E	-	-				-	 			
8										

Section 4 Analytical Data Validation

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage						
Laboratory:	Katahdin Analytical						
Sample Delivery Groups:	S14862						
Analyses/Method:		Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion					
Validation Level:	3						
Project Number:	0888812477.SA.DV						
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/15/2015					
Reviewed by:	Tina Clemmey/Resolution Consultants	File Name: SI4862_9060A_5310B					

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 6 July 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE123D1-070615-488-490	SI4862-2	Soil	9060A
RE123D1-EB-070615	SI4862-1	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

		Sample Deliv	SI4862	SI4862	
			Lab ID	SI4862-1	SI4862-2
		9	Sample ID	RE123DI-EB-070615	RE123DI-070615-488-490
	Sample Date		7/6/2015	7/6/2015	
		Saı	mple Type	Equipment Blank	Soil
Method	Analyte	CAS No	Units		
2540G	TOTAL SOLIDS	-29	PCT	NA	83
5310B	TOTAL ORGANIC CARBON	-28	MG_L	0.12 J	NA
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA	570

Identification Percent Milligrams per liter Micrograms per gram Not analyzed ID PCT MG_L UG_G NA

Final Qualifier:

The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Regional Groundwater Investigation — NWIRP Bethpage		
Catahdin Analytical		
\$15844		
	by U.S. EPA SW-846 Method 9060A and Standard nic Carbon by High-Temperature Combustion	
3		
0888812477.SA.DV		
Dana Miller/Resolution Consultants	Completed on: 09/15/2015	
Fina Clemmey/Resolution Consultants	File Name: SI5844_9060A_5310B	
	atahdin Analytical I5844 otal Organic Carbon (TOC) belethod 5310B for Total Organic Carbon (TOC) belethod 5310B	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 21 August 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE123D2-080315-643-645	SI5844-2	Soil	9060A
RE123D2-EB-080315	SI5844-1	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

	Sample Delivery Group		SI5844	SI5844	
	Lab ID		SI5844-1	SI5844-2	
	Sample ID		RE123D2-EB-080315	RE123D2-080315-643-645	
	Sample Date		8/3/2015	8/3/2015	
Sample Type		Equipment Blank	Soil		
Method	Analyte	CAS No	Units		
2540G	TOTAL SOLIDS	-29	PCT	NA	82
5310B	TOTAL ORGANIC CARBON	-28	MG_L	0.33 J	NA
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA	270 J

ID Identification PCT

Percent
Milligrams per liter
Micrograms per gram
Not analyzed MG_L UG_G NA

Final Qualifier:

The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Groups:	SI6480		
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion	
Validation Level:	3		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/15/2015	
Reviewed by:	Tina Clemmey/Resolution Consultants	File Name: SI6480_9060A_5310B	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 21 August 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE123D3-082115-818-820	SI6480-1	Soil	9060A
RE123D3-EB-082115	SI6480-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

	Sample Delivery Group			SI6480	SI6480
	Lab ID		SI6480-1	SI6480-2	
	Sample ID		RE123D3-082115-818-820	RE123D3-EB-082115	
	Sample Date		08/21/2015	08/21/2015	
	Sample Type		Soil	Equipment Blank	
Method	Analyte	CAS No	Units		
2540G	TOTAL SOLIDS	-29	PCT	85	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.3 J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	130 J	NA

Identification Percent Milligrams per liter Micrograms per gram Not analyzed ID PCT MG_L UG_G NA

Final Qualifier:

The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Group:	BETHPAGE-2		
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)		
Validation Level:	3		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants Completed on: 11/30/2015		
Reviewed by:	Tina Clemmey/Resolution Consultants File Name: BETHPAGE2_8260C_8270D		

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage Site on 25 and 30 September 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants, April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants, November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants, August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE104D1-GW-092515	SI7583-1	Groundwater	8260C/8270D_SIM
RE108D2-GW-092815	SI7583-10	Groundwater	8260C/8270D_SIM
TB01-092815	SI7583-11	Trip Blank	8260C
TB02-092815	SI7583-18RA	Trip Blank	8260C
RE104D2-GW-092515	SI7583-2	Groundwater	8260C/8270D_SIM
RE104D3-GW-092515	SI7583-3	Groundwater	8260C/8270D_SIM
TT309S-GW-092515	SI7583-4	Groundwater	8260C/8270D_SIM
TT309I-GW-092515	SI7583-5	Groundwater	8260C/8270D_SIM
TT309D-GW-092515	SI7583-6	Groundwater	8260C/8270D_SIM
RE105D1-GW-092815	SI7583-7	Groundwater	8260C/8270D_SIM

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE105D2-GW-092815	SI7583-8	Groundwater	8260C/8270D_SIM
RE108D1-GW-092815	SI7583-9	Groundwater	8260C/8270D_SIM
DUPLICATE-GW-092915	SI7681-10	Duplicate of TT101D-GW-092915	8260C/8270D_SIM
RE122D1-GW-093015	SI7681-11	Groundwater	8260C/8270D_SIM
RE122D2-GW-093015	SI7681-12	Groundwater	8260C/8270D_SIM
RE122D3-GW-093015	SI7681-13	Groundwater	8260C/8270D_SIM
RE103D1-GW-093015	SI7681-14	Groundwater	8260C/8270D_SIM
RE103D2-GW-093015	SI7681-15	Groundwater	8260C/8270D_SIM
RE103D3-GW-093015	SI7681-16	Groundwater	8260C/8270D_SIM
TB01-093015	SI7681-17	Trip Blank	8260C
RE123D1-GW-092915	SI7681-1RA	Groundwater	8260C/8270D_SIM
RE123D2-GW-092915	SI7681-2RA	Groundwater	8260C/8270D_SIM
RE123D3-GW-092915	SI7681-3RA	Groundwater	8260C/8270D_SIM
RE120D1-GW-092915	SI7681-4	Groundwater	8260C/8270D_SIM
RE120D2-GW-092915	SI7681-5	Groundwater	8260C/8270D_SIM
RE120D3-GW-092915	SI7681-6	Groundwater	8260C/8270D_SIM
TT101D-GW-092915	SI7681-7	Groundwater	8260C/8270D_SIM
TT101D1-GW-092915	SI7681-8	Groundwater	8260C/8270D_SIM
TT101D2-GW-092915	SI7681-9	Groundwater	8260C/8270D_SIM

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (United States Environmental Protection Agency [U.S. EPA] 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA 2007), *U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, June 2008), and *Department of Defense Quality Systems Manual for Environmental Laboratories*, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements, and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation

- ✓ Gas chromatography/Mass spectrometer performance checks
- Initial calibration verification (ICV)/continuing calibration verification (CCV)
- X Laboratory blanks/trip blanks
- **X** Surrogate spike recoveries
- X Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample/laboratory control sample duplicate results
- ✓ Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (\checkmark) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- The initial calibration percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met
- The ICV standard percent recovery acceptance criteria were met
- The CCV method percent difference or percent drift and response factor acceptance criteria were met
- The retention time method acceptance criteria were met

Data qualification to the analytes associated with the specific initial calibration (ICAL) was as follows:

ICAL Linearity Non-conformance:

Cuitorio	Actions	
Criteria	Detected Results	Non-detected Results
%RSD >15% and quantitation based on mean response factor	J	ΩΊ

Notes:

%RSD = Relative standard deviation

J = Estimated

UJ = Undetected and estimated

Data qualification to the analytes associated with the specific ICV was as follows:

ICV Recovery Non-conformance:

Criteria	Actions		
Criteria	Detected Results	Non-detected Results	
Recovery >120%	J	UJ	
Recovery < 80%	J	UJ	

Notes:

J = Estimated

UJ = Undetected and estimated

Data qualification to the analytes associated with the specific CCV was as follows:

CCV Linearity Non-conformance:

Criteria	Actions	
Criteria	Detected Results	Non-detected Results
%Difference or %Drift > 20%	J	UJ

Notes:

J = Estimated

UJ = Undetected and estimated

ICAL, ICV and CCV non-conformances are summarized in Attachment A in Table's A-1, A-2, and A-3.

Laboratory Blanks/Equipment Blanks/ Field Blanks/Trip Blanks

Laboratory blanks, equipment blanks, field blanks, and trip blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Samples were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

	For common	n lab contaminants (r	methylene chloride, acetone, 2-butanone):				
Blank type	Blank result	Sample result	Action for samples				
Method,	Detects	Not detected	No qualification				
Storage, Trip,		< 2x LOQ	Report sample LOQ value with a U				
Field, or Equipment	≤ 2x LOQ	\geq 2x LOQ and \leq 4x the LOQ	Report the sample result with a U**				
			No qualifications				
		< LOD	Report sample LOD value with a U**				
		≥ LOD and < 2x LOQ	Report sample LOQ value with a U				
	> 2x LOQ	≥ 2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R				
		≥ 2x LOQ and ≥ blank contamination	If the result is ≤2x blank result, report the sample result U.** If the result is > 2x blank result, no qualification is required.**				
**Based on Res	solution Consu	**Based on Resolution Consultants professional judgment					

	For all other compounds:							
Blank type	Blank result	Sample result	Action for samples					
	Detects	Not detected	No qualification					
	. 24100	< 2x LOQ	Report sample LOQ value with a U					
	< 2x LOQ	<u>></u> 2x LOQ	Use professional judgment					
		< 2x LOQ	Report sample LOQ value with a U					
Method, Storage, Trip, Field, or Equipment	> 2x LOQ	2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R					
		≥ 2x LOQ and ≥ blank contamination	If the result is ≤2x blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.					
	0.100	< 2x LOQ	Report sample LOQ value with a U					
	= 2x LOQ	<u>></u> 2x LOQ	Use professional judgment					
	Gross contamination	Detects	Qualify results as unusable R					

Notes:

LOQ = Limit of quantitation
LOD = Limit of detection
U = Undetected
R = Rejected

Lab blank and trip blank non-conformances are summarized in Attachment A in Table's A-4, and A-5.

Surrogate Spike Recoveries

Surrogates provide information needed to assess the accuracy of analyses. Known amounts of surrogate compounds, or compounds which are not likely to be found in the actual samples, are added to each organic sample to check for accuracy. If surrogate percent recoveries (%Rs) are close

to the known concentrations, the reported target compound concentrations are assumed to be accurate. Data qualification on the basis of surrogate recovery was as follows:

Surrogate Recovery Non-conformance Chart:

Criteria	Action		
Criteria	Detected	Non-detected	
% R > Upper Limit	J	No qualification	
20% < %R < Lower Limit	J	UJ	
% R < 20%	J	Rejected	

Notes:

%R = Percent recovery
J = Estimated

UJ = Undetected and estimated

Surrogate recovery non-conformance is summarized in Attachment A in Table A-6.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

MS/MSDs are generated to provide information about the effect of each sample matrix on the sample preparation and the measurement methodology. MS/MSD percent recoveries (%Rs) assess the effect of the sample matrix on the accuracy of the analytical results and %Rs above the laboratory control limit could indicate a potential high result bias while %Rs below QC limits could indicate a potential low result bias. The relative percent differences (RPDs) between the MS and MSD results are evaluated to assess sample precision. The MS/MSD %Rs and RPDs were reviewed for conformance with the QC acceptance criteria. Data qualification to the analytes associated with the specific MS/MSD non-conformances were as follows:

MS/MSD Non-conformances Chart:

Cuitonio	Action				
Criteria	Detected Compounds	Non-detected Compounds			
%R>Upper Limit	J	No qualification			
20% < %R < Lower Limit	J	U			
%R <20%	J	Rejected			

Notes:

%R = Percent recovery

RPD = Relative percent difference

J = Estimated

UJ = Undetected and estimated

MS/MSD non-conformances are summarized in Attachment A in Table A-7.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

	Table A-1 Initial Calibration Non-Conformance						
Method	Analyte	%RSD	Limit	Associated Samples	Qualifier		
8260C	Chloromethane	15.21596	<15%	SI7583-1 through S17583-11, S17583- 18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ		
8260C	Bromomethane	15.30744	SI7583-1 through S17583-11, S17583- 18RA, S17583-10DL, SI7583-8DL		Detects: J Non-detects: UJ		
8260C	Chloroethane	22.54919	22 5/010 ~15%		Detects: J Non-detects: UJ		
8260C	Acetone	16.25899	<15%	SI7583-1 through S17583-11, S17583- 18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ		
8260C	Methyl cyclohexane	15.66496	<15%	SI7583-1 through S17583-11, S17583- 18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ		
8260C	2-Hexanone	15.46497	<15%	S17681-14 through S17681-17, S17681- 1RA through S17681-3RA, S17681-9DL, S17681-11DL, S17681-12DL,	Detects: J Non-detects: UJ		
8260C	O-Xylene	15.32272	<15%	S17681-14 through S17681-17, S17681- 15% 1RA through S17681-3RA, S17681-9DL, S17681-11DL, S17681-12DL,			
8260C	1,2-Dibromo-3-chloropropane	29.69098	SI7681-4 through S17681-13, SI7681-14DL Dete		Detects: J Non-detects: UJ		

Notes: %RSD UJ J Relative standard deviation = Non-detect estimated value

Estimated value =

		Initial Calibration	Table A		onformance	
Method	Analyte	Initial Calibration	%R	Limit	Associated Samples	Qualifier
8260C	Dichlorodifluoromethane	WG171044-7	67.47	80-120	SI7583-1 through S17583-11, S17583-18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ
8260C	Trichlorofluoromethane	WG171044-7	79.95	80-120	SI7583-1 through S17583-11, S17583-18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ
8260C	Carbon Disulfide	WG171044-7	79.65	80-120	S17583-1 through S17583-11, S17583-18RA, S17583-10DL, S17583-8DL	Detects: J Non-detects: UJ
8260C	Acetone	WG171044-7	138.88	80-120	SI7583-1 through S17583-11, S17583-18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ
8260C	2-Butanone	WG171044-7	159.36	80-120	SI7583-1 through S17583-11, S17583-18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ
8260C	4-methyl-2-pentanone	WG171044-7	146.19	80-120	S17583-1 through S17583-11, S17583-18RA, S17583-10DL, S17583-8DL	Detects: J Non-detects: UJ
8260C	2-Hexanone	WG171044-7	153.44	80-120	SI7583-1 through S17583-11, S17583-18RA, S17583-10DL, SI7583-8DL	Detects: J Non-detects: UJ
8260C	Carbon Disulfide	WG171658-7	79.48	80-120	S17681-14 through S17681- 17, S17681-1RA through S17681-3RA, S17681-9DL, S17681-11DL, S17681-12DL,	Detects: J Non-detects: UJ
8260C	Acetone	WG171658-7	134.34	80-120	S17681-14 through S17681- 17, S17681-1RA through S17681-3RA, S17681-9DL, S17681-11DL, S17681-12DL,	Detects: J Non-detects: UJ
8260C	2-Butanone	WG171658-7	143.56	80-120	S17681-14 through S17681- 17, S17681-1RA through Det	
8260C	4-methyl-2-pentanone	WG171658-7	150.32	80-120	S17681-14 through S17681- 17, S17681-1RA through	
8260C	2-Hexanone	WG171658-7	156.23	80-120	S17681-14 through S17681- 17, S17681-1RA through 20 S17681-3RA, S17681-9DL, S17681-11DL, S17681-12DL,	
8260C	Dichlorodifluoromethane	WG171660-7	123.49	80-120	SI7681-4 through S17681-13, SI7681-14DL through SI7681- 16DL	Detects: J Non-detects: UJ

Initial calibration verification identification Identification =

ICV ID ID = %R UJ J =

Percent recovery
Non-detect estimated value
Estimated value

Table A-3 Continuing Calibration Verification Non-Conformance						
Lab ID /Calibration ID	Analyte	%D	%D Limit	Associated Samples	Qualifier	
WG171352-4 / C4922.D	Tetrachloroethene	34.59924	+/- 20	S17583-1, S17583-2, S17583-3, S17583-4, S17583-5, S17583-6, S17583-7, S17583-8, S17583-9, S17583-10, and S17583-11	Detects: J Non-detects: UJ	
WG171374-4 / C4942.D	Methyl cyclohexane	21.55731	+/- 20	SI7583-18RA, SI7583-10DL, SI7583-8DL, SI7681-17, SI7681- 14, SI7681-15, and SI7681-16	Detects: J Non-detects: UJ	
WG171659-4 / C5030.D	Tetrachloroethene	-29.10536	+/- 20	SI7681-1RA, SI7681-2RA, SI7681-3RA, SI7681-4DL, SI7681-5DL, SI7681-8RA, SI7681-9DL, SI7681-11DL, SI7681-12DL	Detects: J Non-detects: UJ	
WG171660-4 / P3089.D	Dichlorodifluoromethane	41.50045	+/- 20	SI7681-4, SI7681-5, SI7681-6, SI7681-7, SI7681-8, SI7681-9, SI7681-10, SI7681-11, SI7681- 12, SI7681-13	Detects: J Non-detects: UJ	
WG171601-4 / P3113.D	Dichlorodifluoromethane	40.79053	+/- 20	SI7681-14DL, SI7681-15DL, SI7681-16DL	Detects: J Non-detects: UJ	
WG171601-4 / P3113.D	Chloromethane	22.86899	+/- 20	SI7681-14DL, SI7681-15DL, SI7681-16DL	Detects: J Non-detects: UJ	
WG171601-4 / P3113.D	Tetrachloroethene	-30.50148	+/- 20	SI7681-14DL, SI7681-15DL, SI7681-16DL	Detects: J Non-detects: UJ	

ID = Identification %D = Percent difference

UJ = Non-detect estimated value J = Detected estimated value

Ī	Table A-4 Lab Blank Non-Conformance (Micrograms per liter)					
I	Blank ID Analyte Blank Result LOQ Associated Sample Qualifier					Qualifier
Ī	WG171658-9	Carbon Disulfide	0.41	1	TB01-093015	U

Notes:

ID = Identification LOQ = Limit of quantitation

U = Detected analyte qualified as non-detect due to sample result being less than 2 times the LOQ.

Table A-5 Field Blank Non-Conformance (Micrograms per liter)					
Blank Blank ID Analyte Result LOQ Associated Sample Qualifier				Qualifier	
TB01-092815	Chloromethane	0.46	2	TT309S-GW-092515	U
TB01-093015	Chloromethane	0.82	2	RE123D2-GW-092915	U
TB01-093015	Chloromethane	0.82	2	RE123D3-GW-092915	U

Notes:

ID = Identification LOQ = Limit of quantitation

U = Detected analyte qualified as non-detect due to sample result being less than 2 times the LOQ.

	Table A-6 Surrogate Non-Conformance						
Method	Surrogate	%R	Limits	Associated Sample	Qualifier		
8260C	1,2-Dichloroethane-d4	121	70-120	RE103D3-GW-093015	Detects: J		
8260C	1,2-Dichloroethane-d4	122	70-120	RE120D1-GW-092915	Detects: J		
8260C	1,2-Dichloroethane-d4	124	70-120	RE120D2-GW-092915	Detects: J		
8260C	Dibromofluoromethane	81.3	85-115	RE122D1-GW-093015	Detects: J and Non-detects: UJ		
8260C	1,2-Dichloroethane-d4	124	70-120	RE122D1-GW-093015	Detects: J		
8260C	Dibromofluoromethane	83.4	85-115	RE122D2-GW-093015	Detects: J and Non-detects: UJ		
8260C	1,2-Dichloroethane-d4	122	70-120	RE122D2-GW-093015	Detects: J		
8260C	Dibromofluoromethane	84.7	85-115	RE122D3-GW-093015	Detects: J and Non-detects: UJ		
8260C	Dibromofluoromethane	80.4	85-115	TT101D1-GW-092915	Detects: J and Non-detects: UJ		
8260C	1,2-Dichloroethane-d4	122	70-120	TT101D1-GW-092915	Detects: J		
8260C	Dibromofluoromethane	84.5	85-115	TT101D2-GW-092915	Detects: J and Non-detects: UJ		
8260C	1,2-Dichloroethane-d4	121	70-120	TT101D2-GW-092915	Detects: J		

%R

Percent recovery Non-detect estimated value UJ Detected estimated value

Table A-7 Matrix Spike/Matrix Spike Duplicate Non-Conformance (Micrograms per liter)							
Spiked Sample	Analyte	Sample Result	Spike Added	MS %R	MSD %R	%R Limits	Qualifier
TT101D2-GW-092915	Trichloroethene	640	50.0	154*	252*	70-125	J

Notes:

MS Matrix spike Matrix spike duplicate
Percent recovery
Percent recovery less than lower control limit MSD %R

Bold*

Detected analyte in associated sample qualified estimated "J" because %R is greater than control limit in associated

Attachment B

Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

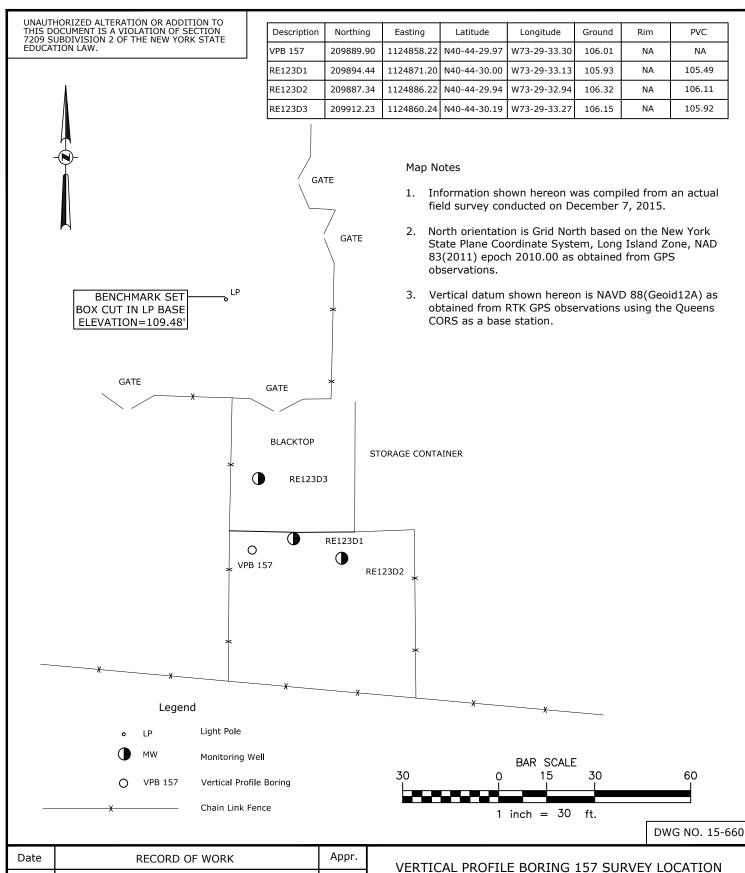
Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
Ic	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
Х	Percent solids
у	Serial dilution results
Z	Interference check sample results (metals)

Attachment D
Final Results after Data Review

		Sample	BETHPAGE-2 SI7681-1RA RE123D1-GW-092915			
			Sample Date Sample Type	9/29/2015		
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	1
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	Ü	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	Ü	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	Ü	
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	Ü	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.42	J	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	Ü	
8260C	1.2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	Ü	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	Ü	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	0.5	J	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG L	0.5	Ü	
8260C	1.3-DICHLOROBENZENE	541-73-1	UG L	0.5	Ü	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	Ü	
8260C	2-BUTANONE	78-93-3	UG L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG L	2.5	UJ	C
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	UJ	С
8260C	ACETONE	67-64-1	UG L	5.4	J	С
8260C	BENZENE	71-43-2	UG L	0.5	Ü	-
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	C
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	J	
	,				U	
8260C 8260C	CIS-1,3-DICHLOROPROPENE CYCLOHEXANE	10061-01-5 110-82-7	UG_L UG L	0.5 0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	-
8260C	DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L UG L	0.5	U	
						-
8260C	ISOPROPYLBENZENE M- AND P-XYLENE	98-82-8	UG_L	0.5	U	-
8260C 8260C	METHYL ACETATE	108-38-3/106-42 79-20-9	UG_L UG L	1 0.75	U	
8260C 8260C	METHYL ACETATE METHYL CYCLOHEXANE		UG_L UG L		U	-
		108-87-2		0.5		1
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	1
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	-
8260C	O-XYLENE CTVDENE	95-47-6	UG_L	0.5	UJ	С
8260C	STYRENE	100-42-5	UG_L	0.5	U	_
8260C	TETRACHLOROETHENE	127-18-4	UG_L	3.8	J	С
8260C	TOLUENE TRANS 4.2 DICHI ODOFTHENE	108-88-3	UG_L	0.5	U	1
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	12		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	ļ
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	1

		Sample	BETHPAGE-2 SI7681-2RA RE123D2-GW-092915 9/29/2015 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1.2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	Ū	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	Ū	
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	Ū	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	Ü	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG L	0.5	Ü	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	Ü	
8260C	2-BUTANONE	78-93-3	UG L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG L	2.5	UJ	С
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	UJ	С
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	C
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	C
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	UJ	bt
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	Di
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	IJ	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	Ü	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	Ü	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG L	0.5	UJ	С
8260C	STYRENE	100-42-5	UG L	0.5	U	U
8260C	TETRACHLOROETHENE	127-18-4	UG L	3.7	J	С
8260C	TOLUENE	108-88-3	UG L	0.5	U	
8260C	TRANS-1.2-DICHLOROETHENE	156-60-5	UG L	0.5	Ü	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	1.4		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	Ü	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.93		


		Sample	BETHPAGE-2 SI7681-3RA RE123D3-GW-092915 9/29/2015 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG_L	2.5	UJ	С
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	UJ	С
8260C	ACETONE	67-64-1	UG L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	UJ	bt
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	Ü	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	Ü	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	Ü	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	Ü	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	IJ	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.75	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG L	0.5	UJ	С
8260C	STYRENE	100-42-5	UG_L	0.5	U	U
8260C	TETRACHLOROETHENE	127-18-4	UG L	0.5	UJ	С
8260C	TOLUENE	108-88-3	UG L	0.5	U	U
8260C	TRANS-1.2-DICHLOROETHENE	156-60-5	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	79-01-6 75-69-4	UG_L	1	U	
8260C 8260C	VINYL CHLORIDE	75-69-4 75-01-4	UG_L UG L	1	U	
8260C 8260C	XYLENES, TOTAL	75-01-4 1330-20-7	UG_L UG_L	1.5	U	
	I ATTENES IUTAL	1.3.3()-/()-/	ı UCI	La		

Section 5

Survey

Drafter: LMK

Appr. by: JFC

Checker: JFC

Proj. No. 14.4121

TOWN OF BETHPAGE

NASSAU COUNTY, NEW YORK

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture & Landscape Architecture, D.P.C.

PARKING LOT OFF OF SUNBEAM AVE.

50 CENTURY HILL DRIVE, LATHAM, NY 12110 518.786.7400 * FAX 518.786.7299

SCALE: 1"=30"

DATE: DECEMBER 7, 2015